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ABSTRACT

Presented is a summary of two historical curricular modules for undergraduate discrete math-
ematics. The first “Deduction through the Ages” is a discussion of how modern mathematics ar-
rived at the truth of an implication (an “if-then” statement) in propositional logic. The second
“Networks and Spanning Trees” presents motivational material for the definition, enumeration,
and application of trees in graph theory.
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1 Introduction

In this talk we discuss teaching discrete mathematics from primary historical sources and provide the
results of a statistical study concerning the impact of this pedagogical technique on student learning
attitudes. Over the past four years our interdisciplinary, intercollegiate team of seven faculty have de-
veloped 18 curricular modules that incorporate passages from primary sources to teach core content
in finite mathematics, combinatorics, logic, abstract algebra, algorithm design, and computer science
courses. This builds on a pilot study to teach from historical projects [3]. Each module is designed
around one or several historical sources and develops a key concept (or several concepts) in the cur-
riculum by examining the work of the pioneers and offering student exercises that illuminate and
extrapolate from the source. Topics for the modules are often an examination of the ideas behind
modern definitions, algorithms or lemmas that appear as opaque or unmotivated statements in to-
day’s textbooks, such as the truth table of an implication in propositional logic, the definition of tree
in graph theory, or the formula for the summation of squares,

∑n
i=1 i

2 = (n3/3)+ (n2/2)+ (n/6), and
the unenlightening proof of this equality by formal mathematical induction. For the complete list of
our curricular projects, along with the text of each one, see our web resource [2].

Why teach from historical sources when textbooks offer a concise, mathematically precise presen-
tation of the subject? First, historical sources add context, with the original author keenly motivated to
solve a particular problem or find a robust setting for previously fragmented solutions. We read what
the problem was and witness a pioneering, often paradigm-setting approach. The primary source
reveals the motivation for study of the subject or paradigm. Historical sources add direction to the
subject matter. We observe where the author begins, how a problem is solved, and what subsequent
work builds on the solution. Additionally we as readers are forced to grapple with the verbal meaning
of a passage, consider non-standard formulations of ideas, and ask “What is an appropriate system
of notation for this problem?” “What are the key properties to a solution to this problem?” We learn
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through cognitive dissonance. The thought process required to bridge the gap between the historical
and the modern offers an invaluable learning experience. We gain insight into the process of discov-
ery as well as an appreciation of the cultural and intellectual setting in which the author was writing.
For further reasons to study from primary historical sources, see [1, 3]. For the results of a pilot study
using this pedagogical technique, see [3]. To illustrate how the historical approach can be used to teach
mathematical content, we examine two historical modules in detail: “Deduction through the Ages,”
and “Networks and Spanning Trees.” The first is a study of the original work of several philosophers,
logicians and mathematicians who have contributed to an understanding of the truth table of an im-
plication (an “if-then” statement). The second examines the notion of tree and its applications before
graph theory was an independent subject of study.

2 Deduction through the Ages

While today the truth of p → q (p implies q) is a matter of settled logic, the ancient Greeks debated
at length when the following hypothetical proposition holds: “If a warrior is born at the rising of
the Dog Star, then that warrior will not die at sea.” The Greek philosopher Philo of Megara (ca. 4th
century ...) maintained that a valid hypothetical proposition is “that which does not begin with
a truth and end with a falsehood” [18, II. 110]. The on-line written project “Deduction through the
Ages” [2] outlines five argument forms stated by Chrysippus (ca. 280–206 ...) [11, p. 189], and raises
the question (for students and instructors) whether these five rules could be special cases of just one
rule. This presentation focuses on the following three (of five) rules:

1. If the first, [then] the second. The first. Therefore, the second.

3. Not both the first and the second. The first. Therefore, not the second.

5. Either the first or the second. Not the first. Therefore, the second.

Verbal argument asserting the equivalence of these rules is difficult, and a more streamlined
method for discussing their relation to each other is sought. An old point of view on logic is to reduce
the subject to a system of calculation, whereby the rules of reasoning could be automated. The Ger-
man philosopher, mathematician, and universalist Gottfried Wilhelm Leibniz (1646–1716) was one of
the first to pursue this idea, and sought a characteristica generalis (general characteristic) or a lingua gen-
eralis (general language) that would serve as a universal symbolic language and reduce all debate to
calculation. This in part served as motivation for Leibniz to introduce his symbols for differentiation
and integration.

2.1 Boole’s Algebra of Statements

In the modern era, an initial attempt at a symbolic and almost calculational form of elementary logic
was introduced by the English mathematician George Boole (1815–1864). Author of An Investigation
of the Laws of Thought [4, 5], Boole believed that he had reduced language and reasoning to a system of
calculation involving the signs “×”, “+”, “−”, where “×” denotes “and,” “+” denotes “or,” and “−”
denotes “not.” Boole writes [5]:

∞∞∞∞∞∞∞∞
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P I.

All the operations of Language, as an instrument of reasoning, may be conducted by a system of signs
composed of the following elements, viz:

1st. Literal symbols, as x, y &c., representing things as subjects of our conceptions.
2nd. Signs of operation, as +, −, ×, standing for those operations of the mind by which the conceptions

of things are combined or resolved so as to form new conceptions involving the elements.
3rd. The sign of identity, =.
And these symbols of Logic are in their use subject to definite laws, partly agreeing with and partly

differing from the laws of the corresponding symbols in the science of Algebra. . . .

If x represent any class of objects, then will 1 − x represent the contrary or supplementary class of
objects, i.e. the class including all objects which are not comprehended in the class x.

∞∞∞∞∞∞∞∞

The symbols “×”, “+”, “−”, however, lose their arithmetic meaning when applied to the logic of
statements. For example, letting a denote the class of apples and b the class of red objects, then in
Boole’s notation the class of objects that are not red apples would be 1−ab. Objects that are either not
apples or not red would be (1− a) + (1− b). Thus, in Boole’s notation

1− ab = (1− a) + (1− b),

which reflects a statement in logic, not arithmetic. Also, Boole does not introduce a symbol for an
“if-then” statement, so writing Chrysippus’s first rule in this arithmetic notation is difficult.

2.2 Gottlob Frege Invents a Concept-Script

Let’s now turn to the work of the German mathematician and philosopher Gottlob Frege (1848–1925)
who sought a logical basis, not for language as Boole, but for mathematics. In The Basic Laws of Arith-
metic [12], Frege introduces his own system of notation, called a concept-script or “Begriffsschrift”in
the original German, which shows no kinship with the arithmetical symbols “×”, “+”, “−”. The cen-
terpiece of Frege’s notation is the condition stroke1. From The Basic Laws of Arithmetic, we read:

∞∞∞∞∞∞∞∞

§12. Condition-stroke, And, Neither-nor,
Subcomponents, Main Component.

In order to enable us to designate the subordination of a concept under a concept, and other important
relations, I introduce the function of two arguments

ξ

ζ

1
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by stipulating that its value shall be the False if the True be taken as ζ-argument and any object other
than the True be taken as ξ-argument, and that in all other cases, the value of the function shall be the
True. . . . The vertical stroke I call the condition-stroke. . . . .

∞∞∞∞∞∞∞∞

Thus, the symbol B

A

is false only when A (the beginning proposition) is true and B (the ending

proposition) is false. The reader is asked to compare the truth of Frege’s condition stroke to Philo’s
verbal statement that a valid hypothetical proposition is “that which does not begin with a truth and
end with a falsehood.” The condition stroke is true when it is not the case that it begins (A) with a
true statement and ends with a false statement (B). Thus, the condition stroke is Frege’s symbol for
an implication (a hypothetical proposition in ancient Greece). We use a few other symbols from the
“Begriffsschrift.” A horizontal line — denotes a “judgment stroke” that renders the value of either
true or false when applied to a proposition. For example, — 22 = 5 returns the value “false,” while
— 22 = 4 returns “true.” The symbol ξ denotes the negation of — ξ, while ζ denotes that ζ is a true
statement. These symbols may be combined in what Frege calls “amalgamation of horizontals,” so
that ( ∆) becomes ∆, meaning that the negation of ∆ is true, i.e., ∆ itself is false.

Let’s now write Chrysippian rules (1), (3), and (5) above entirely in the concept-script. Frege him-
self states the “First Method of Inference” as from the propositions B

A

and A we may infer B.

Letting A denote “the first” and B denote “the second,” this “First Method of Inference” becomes
verbally: “If the first, then the second. The first is true, therefore, the second is true.” How can we
write Chrysippus’s third rule in Frege notation? Recall that the symbol

B

A

is false only when A is true and B is false. Thus B

A

is false only when A is true and B is true, which

has the same truth value as “not both A and B.” Again, letting A denote “the first” and B denote
“the second,” we see that “not both the first and the second, not the first, therefore, not the second”
can be written as from B

A

and A, it follows B. Finally, to write the fifth Chrysippian rule in the

concept-script, note that the symbol B

A

is false only when A is false and B is false, which has the

same truth value as “either the first or the second,” using the inclusive “or.” Thus, “either the first or
the second, not the first, therefore, the second” can be rendered as from B

A

and A, it follows B.

Thus, rules (1) , (3) and (5) can all be written using the same root symbol, the condition stroke, and
minor variations on negating or asserting its arguments. This demonstrates the interconnectedness
of these rules, and offers insight into their possible equivalence.
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2.3 Russell and Whitehead Find New Notation

While somewhat awkward in execution, Frege’s condition stroke advances his philosophy that math-
ematical truths should follow from truths in logic, a point of view known today as logicism. Two later
practitioners of logicism whose work set the stage for mathematical logic of the twentieth century
were Bertrand Russell (1872–1970) and Alfred North Whitehead (1861–1947). Russell was a prolific
writer, contributing to the fields of education, history, religion, and political theory, not to mention
philosophy and logic. Let’s read a short excerpt from Russell and Whitehead’s monumental collab-
oration Principia Mathematica [17], where an implication (an “if-then” statement) is formally defined.
Note how the definition of “p implies q” reduces to the equivalent inclusive “or” statement in Frege’s
notation.

∞∞∞∞∞∞∞∞

The fundamental functions of propositions. . . .
[T]here are four special cases which are of fundamental importance, since all the aggregations of

subordinate propositions into one complex proposition which occur in the sequel are formed out of them
step by step.

They are (1) The Contradictory Function, (2) the Logical Sum or Disjunctive Function, (3) the Logical
Product, or Conjunctive Function, (4) the Implicative Function. . . .

The Contradictory Function with argument p, where p is any proposition, is the proposition which is
the contradictory of p, that is, the proposition asserting that p is not true. This is denoted by ∼ p. Thus,
∼ p . . . means the negation of the proposition p. It will also be referred to as the proposition not-p. . . .

The Logical Sum is a proposition with two arguments p and q, and is the proposition asserting p or
q disjunctively, that is, asserting that at least one of the two p and q is true. This is denoted p ∨ q. . . .
Accordingly p ∨ q means that at least p or q is true, not excluding the case in which both are true.

The Logical Product is a propositional function with two arguments p and q, and is the proposition
asserting p and q conjunctively, that is, asserting that both p and q are true. This is denoted by p.q . . . .
Accordingly p.q means that both p and q are true. . . .

The Implicative Function is a propositional function with two arguments p and q, and is the proposition
that either not-p or q is true, that is, it is the proposition ∼ p ∨ q. Thus, if p is true, ∼ p is false, and
accordingly the only alternative left by the proposition ∼ p ∨ q is that q is true. In other words if p and
∼ p ∨ q are both true, then q is true. In this sense the proposition ∼ p ∨ q will be quoted as stating that
p implies q. The idea contained in this propositional function is so important that it requires a symbolism
which with direct simplicity represents the proposition . . . . The symbol employed for “p implies q”, i.e. for
“∼ p ∨ q” is “p ⊃ q.” This symbol may also be read “if p, then q.” . . .

But this . . . by no means determines whether anything, and if so what, is implied by a false proposition.
What it does determine is that if p implies q, then it cannot be the case that p is true and q is false, . . . .

∞∞∞∞∞∞∞∞

With these crisp definitions, Chrysippus’s rules can be written as follows in the notation of Prin-
cipia Mathematica:
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1. p ⊃ q, p, ∴ q

3. ∼ (p.q), p, ∴∼ q

5. p ∨ q, ∼ p, ∴ q.

To discuss the relation between rules (1) and (5), note that from [17] every implication is equivalent
to a certain inclusive “or” statement and vice versa.

p ⊃ q ≡∼ p ∨ q, p ∨ q ≡∼ p ⊃ q.

The relation between rules (1) and (3) can be discovered from the equivalence between an implication
and a negated “and” statement and vice versa.

p ⊃ q ≡∼ p ∨ q ≡∼ (p.(∼ q)), ∼ (p.q) ≡∼ p∨ ∼ q ≡ p ⊃∼ q.

Thus, the major premise of rule (1), “if the first, then the second” is equivalent to a certain inclusive
“or” statement, which in turn is equivalent to a certain negated “and” statement. Of course, the indi-
vidual arguments of these “or” and “and” statements may themselves be negated, as we saw when
discussing writing Chrysippus’s rules in the “Begriffsscrift.”

2.4 Post Develops Truth Tables

Emil Post (1897–1954) developed a highly efficient method to represent the truth values of compound
statements involving the connectives “and,” “or,” “not,” and “if-then.” He dubbed these schematic
representations “truth tables,” a term which is in current use today. Emil was born in Poland, of Jewish
parents, with whom he emigrated to New York in 1904. He received his doctorate from Columbia
University, where he participated in a seminar devoted to the study of Principia Mathematica. In his
dissertation of 1921, “Introduction to a General Theory of Propositional Functions” [14], he develops
the notion of truth tables and clearly displays the table for an implication. With this in hand, the
equivalence of the major premises in Chrysippus’s rules is reduced to mere calculation of truth values.

∞∞∞∞∞∞∞∞

INTRODUCTION TO A GENERAL THEORY OF ELEMENTARY PROPOSITIONS.

B E L. P.

INTRODUCTION.

In the general theory of logic built up by Whitehead and Russell [17] to furnish a basis for all mathematics
there is a certain subtheory . . . this subtheory uses . . . but one kind of entity which the authors have chosen
to call elementary propositions. . . .

2. Truth-Table Development—Let us denote the truth-value of any proposition p by + if it is true
and by − if it is false. This meaning of + and − is convenient to bear in mind as a guide to thought,
. . . . Then if we attach these two primitive truth-tables to ∼ and ∨ we have a means of calculating the
truth-values of ∼ p and p ∨ q from those of their arguments.
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p ∼ p

+ −
− +

p, q p ∨ q

+ + +
+ − +
− + +
− − −

. . . It will simplify the exposition to introduce . . .

p ⊃ q . = . ∼ p ∨ q

read “p implies q,” . . . having the table

p, q p ⊃ q

+ + +
+ − −
− + +
− − +

∞∞∞∞∞∞∞∞

With the truth table of an implication we have arrived, after more than two millennia of deductive
thought, where modern discrete mathematics textbooks begin a discussion of propositional logic. It
is now a textbook exercise to verify, via truth tables, that the following logical equivalence holds:

p ⊃ q ≡∼ p ∨ q, p ∨ q ≡∼ p ⊃ q

p ⊃ q ≡∼ (p.(∼ q)), ∼ (p.q) ≡ p ⊃∼ q.

3 Networks and Spanning Trees

In 1857 Arthur Cayley (1821–1895) published a paper [9] that introduces the term “tree” to describe
the logical branching that occurs when iterating the fundamental process of (partial) differentiation.
Of composing four symbols that involve derivatives, Cayley writes “But without a more convenient
notation, it would be difficult to find [their] corresponding expressions . . . . This, however, can be at
once effected by means of the analytical forms called trees . . . ” [9]. Without defining the term “tree,”
Cayley has identified a certain structure that occurs today in quite different situations, from networks
in computer science to representing efficient delivery routes for transportation. In a later paper “A
Theorem on Trees” [10] published in 1889, Cayley counts trees in which every node (vertex) carries
a fixed name or label, arriving at a result that today is known as “Cayley’s formula” for the number
of labeled trees on n vertices. His proof is a bit incomplete, and we discuss the work of Heinz Prüfer
(1896–1934) on counting labeled trees via an enumeration of certain railway networks [15]. This is
followed by a discussion of Otakar Boru̇vka’s (1889–1995) work on finding a net of least total edge
length, i.e., a minimal spanning tree, from all labeled trees on n fixed vertices [6].
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3.1 Prüfer’s Enumeration of Trees

The German mathematician Heinz Prüfer offers a quite clever and geometrically appealing method
for counting what today are called labeled trees. He uses no modern terminology, not even the word
“tree” in his work. Instead, the problem is introduced via an application [16]: Given a country with
n-many towns, in how many ways can a railway network be constructed so that

1. the least number of railway segments is used; and

2. a person can travel from each town to any other town by some sequence of connected segments.

The ideas expressed here, that the least number of railway segments is used, yet travel remains pos-
sible between any two towns, are recognized today as properties that characterize such a railway net-
work as a tree. Since the towns are fixed, their names (labels) are not interchangeable, and a labeled
tree is an excellent model for this problem. Prüfer wishes to count all railway networks satisfying
properties (1) and (2) above, and in doing so, he arrives at a result that agrees with Cayley’s formula.
Prüfer assigns to each tree a particular symbol based on the point labels (town names). Counting the
resulting symbols is then much easier than counting trees. Of course, establishing a one-to-one cor-
respondence between symbols and trees requires some work, which Prüfer writes “follows from an
induction argument” (on the number of towns). Let’s read a brief excerpt from “A New Proof of a
Theorem about Permutations” [15, 16]:

∞∞∞∞∞∞∞∞

[We] assign to each railway network, in a unique way, a symbol {a1, a2, . . . , an−2}, whose n − 2

elements can be selected independently from any of the numbers 1, 2, . . ., n. There are nn−2 such symbols,
and this fact, together with the one-to-one correspondence between networks and symbols, will complete
the proof.

In the case n = 2, the empty symbol corresponds to the only possible network, consisting of just one
single segment that connects both towns. If n > 2, we denote the towns by the numbers 1, 2, . . ., n and
specify them in a fixed sequence. The towns at which only one segment terminates we call the endpoints.
. . .

In order to define the symbol belonging to a given net for n > 2, we proceed as follows.
Let b1 be the first town which is an endpoint of the net, and a1 the town which is directly joined to b1.

Then a1 is the first element of the symbol. We now strike out the town b1 and the segment b1 a1. There
remains a net containing n−2 segments that connects n−1 towns in such a way that one can travel from
each town to any other.

If n− 1 > 2 also, then one determines the town a2 with which the first endpoint b2 of the new net is
directly connected. We take a2 as the next element of the symbol. Then we strike out the town b2 and the
segment b2 a2. We obtain a net with n− 3 segments and the same properties.

We continue this procedure until we finally obtain a net with only one segment joining 2 towns. Then
nothing more is included in the symbol.

Examples:

∞∞∞∞∞∞∞∞



Jerry LODDER 153

Nets:

Symbols: {3, 3, 3, 3}

�
�
�
�HHHHH
J
J
J
JJ

3 2

1

6
5

4

{2, 3, 4, 5}

A
AA�

��

A
AA

2

1

3

4

5 6
{2, 4, 6, 4}

@
@@�����

@
@@

PPPPP

@
@
@

@
@

2

14

5
6

3

3.2 Boru̇vka’s Solution to a Minimization Problem

In 1926 Otakar Boru̇vka (1899–1995) published [6, 7] the solution to an applied problem of immediate
benefit for constructing an electrical power network in the Southern Moravia Region, now part of the
Czech Republic. In recalling his own work, Boru̇vka writes [8, 13]:

My studies at polytechnical schools made me feel very close to engineering sciences and
made me fully appreciate technical and other applications of mathematics. Soon after the
end of World War I, at the beginnings of the 1920s, the Electrical Power Company of West-
ern Moravia, Brno, was engaged in rural electrification of Southern Moravia. In the frame-
work of my friendly relations with some of their employees, I was asked to solve, from a
mathematical standpoint, the question of the most economical construction of an electric
power network. I succeeded in finding a construction . . . which I published in 1926 . . . .

Let’s examine specifically how Boru̇vka phrased the problem [7]:

There are n points in the plane (in space) whose mutual distances are all different. We wish
to join them by a net such that:

1. Any two points are joined either directly or by means of some other points.

2. The total length of the net would be the shortest possible.

Thus, of all nn−2 labeled trees on n points (towns), which tree(s) has (have) the shortest possible
total edge length. Boru̇vka proposes a simple algorithm to find such a net of minimal total length,
based on the guiding principle “I shall join each of the given points with the point nearest to it” [7].

∞∞∞∞∞∞∞∞

A Contribution to the Solution of a Problem on the
Economical Construction of Power Networks

Dr. Otakar Boru̇vka

In my paper “On a Certain Minimal Problem,” I proved a general theorem, which, as a special case
solves the following problem:

There are n points in the plane (in space) whose mutual distances are all different. We wish to join
them by a net such that:

1. Any two points are joined either directly or by means of some other points.

2. The total length of the net would be the shortest possible.
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It is evident that a solution of this problem could have some importance in electrical power network
designs; hence I present the solution briefly using an example. . . . .

I shall give the solution of the problem in the case of 40 points2 given in Fig. 1.
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I shall join each of the given points with the point nearest to it. Thus, for example, point 1 with point
2, point 2 with point 3, point 3 with point 4 (point 4 with point 3), point 5 with point 2, point 6 with
point 5, point 7 with point 6, point 8 with point 9 (point 9 with point 8), etc. I shall obtain a sequence of
polygonal strokes 1, 2, . . . , 13 (Fig. 2).
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I shall join each of these strokes with the nearest stroke in the shortest possible way. Thus, for example,
stroke 1 with stroke 2 (stroke 2 with stroke 1), stroke 3 with stroke 4 (stroke 4 with stroke 3), etc. I shall
obtain a sequence of polygonal strokes 1, 2, 3, 4 (Fig.3).

I shall join each of these strokes in the shortest way with the nearest stroke. Thus stroke 1 with stoke
3, stroke 2 with stroke 3 (stroke 3 with stroke 1), stroke 4 with stroke 1. I shall finally obtain a single

2Boru̇vka only labeled the points 1 through 9 in his original paper. We have included labels of all points for later
reference.
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polygonal stroke (Fig. 4)3 which solves the given problem.
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∞∞∞∞∞∞∞∞

4 Impact on Student Leaning Attitudes

Over the past four years the impact of our historical projects on student learning and attitudes has
been assessed by our statistical consultant, Dr. David Trafimow of the Department of Psychology,
New Mexico State University. Students are asked to complete a pre- and post-course questionnaire
which are matched by the use of anonymous codes. A sample question includes:

3In the original paper [7], Figure 4 is rotated 180◦.
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Which best describes you:
I am capable (Extremely) : (Quite) : (Slightly) : (Neutral) : (Slightly) : (Quite) : (Extremely) incapable
of explaining Math/Computer Science concepts in writing.

Above, “extremely capable” is given the value of 3, “quite capable” the value of 2, . . . , and “ex-
tremely incapable” the value −3, forming a scale from +3 to −3, with 0 being neutral. First the ques-
tionnaire was shown to be reliable by repeating similar questions, and Cronbach’s alpha reliability
factor was .89 on the pre- and .90 on the post-course questionnaires, where an alpha factor greater
than .7 is considered reliable. On the scale from +3 to −3 above, the mean from pre- to post-course
questionnaire increased from 1.13 to 1.47. Given the null hypothesis that there is no difference from
pre- to post-course questionnaires, the paired T -test between the means of these two questionnaires
yields p < .001, indicating that the probability of the difference occurring by chance is less than 1 in
1000. Our consultant reaches the conclusion that students’ estimates of their Math/Computer Science
understanding increased from pre- to post-test for courses using historical projects.
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